Braid cobordisms, triangulated categories, and flag varieties

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Se p 20 06 Braid cobordisms , triangulated categories , and flag varieties Mikhail Khovanov and Richard

We argue that various braid group actions on triangulated categories should be extended to projective actions of the category of braid cobordisms and illustrate how this works in examples. We also construct an action of both the affine braid group and the braid cobordism category on the derived category of coherent sheaves on the cotangent bundle to the full flag variety.

متن کامل

2 3 M ay 2 00 7 Braid cobordisms , triangulated categories , and flag varieties Mikhail Khovanov and Richard

We argue that various braid group actions on triangulated categories should be extended to projective actions of the category of braid cobordisms and illustrate how this works in examples. We also construct actions of both the affine braid group and the braid cobordism category on the derived category of coherent sheaves on the cotangent bundle to the full flag variety.

متن کامل

Rouquier Complexes are Functorial over Braid Cobordisms

Using the diagrammatic calculus for Soergel bimodules developed by B. Elias and M. Khovanov, we show that Rouquier complexes are functorial over braid cobordisms. We explicitly describe the chain maps which correspond to movie move generators.

متن کامل

Triangulated Categories and Stable Model Categories

X id → X → 0→ · For any morphism u : X → Y , there is an object Z (called a mapping cone of the morphism u) fitting into a distinguished triangle X u − → Y → Z → · Any triangle isomorphic to a distinguished triangle is distinguished. This means that if X u − → Y v − → Z w −→ X[1] is a distinguished triangle, and f : X → X, g : Y → Y , and h : Z → Z are isomorphisms, then X′ gu f −1 −−−−→ Y ′ hv...

متن کامل

Localizations in Triangulated Categories and Model Categories

Recall that for a triangulated category T , a Bousfield localization is an exact functor L : T → T which is coaugmented (there is a natural transformation Id → L; sometimes L is referred to as a pointed endofunctor) and idempotent (there is a natural isomorphism Lη = ηL : L → LL). The kernel ker(L) is the collection of objects X such that LX = 0. If T is closed under coproducts, it’s a localizi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Homology, Homotopy and Applications

سال: 2007

ISSN: 1532-0073,1532-0081

DOI: 10.4310/hha.2007.v9.n2.a2